B. Scholkopf and A. Smola.
Leaning with Kernels.
MIT Press, 2001.
N. Cristianini and J. Shawe-Taylor.
Introduction to Support Vector Machines.
Cambridge Univeristy Press, 2000.
V. Vapnik.
Statistical Learning Theory.
Wiley, 1998.
S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy.
A fast iterative nearest point algorithm for support vector machine classifier design.
IEEE Transaction on Neural Networks, 11(1):124-136, 2000.
C.-W. Hsu and C.-J. Lin.
A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13:415-425, 2002.
 J. Weston and C. Watkins
MultiClass Support Vector Machines.
In M. Verleysen, editor Proceedings of ESANN99, Brussels 1999. D. Facto Press.
T. Joachims.
Making large-scale SVM learning practical.
In B. Scholkopf, C. Burges, and A. Smola, editors, Advanced in Kernel Methods - Support Vector Learning, pages 169-184. MIT Press, 1999.
E. Osuna, R. Freund, and F. Girosi.
Support vector machines : Training and applications.
Technical Report AI-Memo 1602, M.I.T Artificial Intelligence Laboratory, March 1997.
A. Smola and B. Scholkopf.
A tutorial on support vector regression.
Technical Report TR-1998-030, Neuro Colt Royal Holloway College, 1998.
G. Wahba.
Spline Models for Observational Data.
Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
F. Girosi, M. Jones, and T. Poggio.
Regularization theory and neural networks architectures.
Neural Computation, 7(2):219-269, 1995.
T. Evgeniou, M. Pontil, and T. Poggio.
Regularization networks and support vector machines.
Advances in Computational Mathematics, 13(1):1-50, 2000.
V. Vapnik and O. Chapelle.
Bounds on error expectation for support vector machines.
Neural Computation, 12(9), 2000.
A. Rakotomamonjy and S. Canu.
Learning, frame, reproducing kernel and regularization.
Technical Report TR2002-01, Perception, Systèmes et Information, INSA de Rouen, 2002.

Y. Grandvalet and S. Canu.
Adaptive Scaling for Feature Selection in SVMs.
To appear in NIPS 2003
Canu S., Mary X., and Rakotomamonjy A.
Functional learning through kernels, volume 190, chapter 5, pages 89-110.
IOS Press, advances in learning theory: methods, models and applications, nato science series iii: computer and systems sciences edition, 2003.