
Practical session 1: Linear SVM for two class separable data
(in the Primal)

Stéphane Canu
scanu@insa-rouen.fr, asi.insa-rouen.fr\~scanu

20-25 of july 2015, USP, São Paulo

Practical session description
This practical session aims at writing two functions solving the separable two classes classifica-
tion problem with linear Support Vector Machines (SVM) in the primal as a quadratic program
and the associated linear programing SVM for variable selection. To make it work, you are
supposed to have CVX installed (you can download it from http://cvxr.com/cvx/)

true line
QP SVM
LPSVM

Figure 1: result of TP 1

Ex. 1 — Linear SVM for two class separable data (in the Primal)
1. Build the training data.

a) Generate a set of 20 data points in dimension 2, uniformly distributed in the square
(0,4) and display a scatter plot of this data using red circle.
n = 20; % sample size up to 200000 !
rand('seed',2); % fix the randomess
Xi = 4*rand(n,2); % build the training set
q = 0; % add useless variables
Xi = [Xi 4*rand(n,q)];
[n,p] = size(Xi);
plot(Xi(:,1),Xi(:,2),'or');

b) To make this data set linearly separable, set the labels to 1 for the points above the
separating line w>x + b = 0 with w = (4,−1) and b = −6, and −1 for the points
under the separating line. This will be your training set. Plot the training set, using
red circle for class 1 data points and blue circles for the others.
bt = -6; % define the separation line bias
wt = [4 ; -1]; % define the separation line vector
yi = sign(wt(1) * Xi(:,1) + wt(2) * Xi(:,2) + bt);
hold on; plot(Xi(find(yi==1),1),Xi(find(yi==1),2),'ob');

c) Draw separating line w>x + b = 0 (in green to get figure 1).
x1 = 0;
y1 = (-bt-(wt(1)*x1))/wt(2);
x2 = 4;
y2 = (-bt-(wt(1)*x2))/wt(2);
plot([x1 x2],[y1 y2],'g','LineWidth',2)

1

2. Max margin SVM
a) Using CVX, give a Matlab code for solving

max
m,v,a

m

with yi(v>xi + a) ≥ m ; i = 1, n

and ‖v‖2 = 1

cvx_begin % The indentation is used for purely stylistic reasons and is optional.
variables v(p) a m
maximize(m)
subject to

yi.*(Xi*v + a) >= m;
v'*v <= 1;

cvx_end

b) How long does it takes? (use tic/toc matlab instructions)
c) Find the indices of the support vectors, and count them

vec_sup = find(yi.*(Xi*v + a) <= m+eps^.3);
length(vec_sup)

d) Draw the separating hyperplane found by the max margin SVM and the associated
margin and support vectors
x1 = 0; % left bound
y1 = (-a-(v(1)*x1))/v(2); % the separating hyperplane
z1 = (m-a-(v(1)*x1))/v(2); % the margin
zm1 = (-m-a-(v(1)*x1))/v(2); % the other margin
x2 = 4; % right bound
y2 = (-a-(v(1)*x2))/v(2); % the separating hyperplane
z2 = (m-a-(v(1)*x2))/v(2); % the margin
zm2 = (-m-a-(v(1)*x2))/v(2); % the other margin
h = plot([x1 x2],[y1 y2],'k','LineWidth',2);
plot([x1 x2],[z1 z2],':k'); % the margin
plot([x1 x2],[zm1 zm2],':k'); % the other margin
plot(Xi(vec_sup,1),Xi(vec_sup,2),'sm','MarkerSize',10);

3. Linear SVM minimizing the norm (usual form)
a) Using CVX, give a matlab code for solving min

w,b

1
2 ‖w‖

2

with yi(w>xi + b) ≥ 1 ; i = 1, n

cvx_begin
variables w(p) b
minimize(.5*w'*w)
subject to

yi.*(Xi*w + b) >= 1;
cvx_end

b) Check that the results given by the max margin and the min norm SVM are the
same i.e.

v = w
‖w‖ , v = mw and a = b

‖w‖ , a = mb

[v w/norm(w) w v/m]
[a b/norm(w) b a/m]

2

4. SVM and quadratic programming
a) Rewrite the min norm SVM problem as a quadratic program in its stand at form

and use quadprog or cplexqp to solve it
% X = QUADPROG(H,f,A,b) to solve the quadratic programming problem:
% min 0.5*x'*H*x + f'*x subject to: A*x <= b
% x

H = [eye(p)];
H(p+1,p+1) = 0;
f = zeros(p+1,1);
A = -[diag(yi)*Xi yi];
bb = -ones(n,1);
x = quadprog(H,f,A,bb);

b) Check that the results provided by CVX and quadprog are the same
[x [w;b]]

c) How long does it takes. Is it slower or faster than CVX (and why)?
5. Linear programing SVM minimizing the L1 norm (LP SVM)

a) Using CVX, give a matlab code for solving min
w,b

‖w‖1 =
∑p

j=1 |wj |

with yi(w>xi + b) ≥ 1 ; i = 1, n

cvx_begin
variables wl(p) bl
minimize(sum(abs(wl)))
subject to

yi.*(Xi*wl + bl) >= 1;
cvx_end

b) Is it performing variable selection?
c) Draw the separating line estimated by LP SVM

vec_sup = find(yi.*(Xi*wl + bl) < 1 + eps^.3);
plot(Xi(vec_sup,1),Xi(vec_sup,2),'dc','MarkerSize',15);
x1 = 0;
y1 = (-bl-(wl(1)*x1))/(wl(2)+eps^.5);
z1 = (1-bl-(wl(1)*x1))/wl(2);
zm1 = (-1-bl-(wl(1)*x1))/wl(2);
x2 = 4;
y2 = (-bl-(wl(1)*x2))/(wl(2)+eps^.5);
z2 = (1-bl-(wl(1)*x2))/wl(2);
zm2 = (-1-bl-(wl(1)*x2))/wl(2);
plot([x1 x2],[y1 y2],'c')
plot([x1 x2],[z1 z2],':c')
plot([x1 x2],[zm1 zm2],':c')

d) Rewrite the LP SVM problem as a linear program in its standart form and use
linprog or cplexlp to solve it
% X = linprog(f,A,b,Aeq,beq,LB,UB) attempts to solve the linear programming problem:
% min f'*x subject to: A*x <= b and Aeq*x = beq
% x
% so that the solution is in the range LB <= X <= UB

f = [ones(2*p,1); 0];
A = [-diag(yi)*Xi diag(yi)*Xi -yi];
bb = -ones(n,1);

xl = linprog(f,A,bb,[],[],[zeros(2*p,1); -inf]);
wlp = xl(1:p) - xl(p+1:2*p);
blp = x(end);

3

e) Check that the results are the same and compare computing time.
[[wl ; bl] [wlp ; blp]]

6. Compare all the results and computing time. Produce figure 1.
[[wt ; bt] [w ; b] x [wl ; bl]]

7. Write two matlab functions SVMClassPrimal, SVMValPrimal for solving the separable
two classes classification problem with linear Support Vector Machines (SVM) in the
primal as a quadratic program and the associated linear programing SVM for variable
selection.
[w,b] = SVMClassPrimal(Xi,yi,opt);
% opt = 1 for LP SMV and opt = 2 for QP SVM
% you may also ofer the possibility for the user too choose the solver

[y_pred] = SVMValPrimal(Xtest,w,b);

My solution for n = 2000 and q = 200
QP SVM

CVX for max margin SVM: 6.1186
Number of support vectors: 197

CVX for min norm SVM: 7.0278
quadprog for min norm SVM: 5.3852
cplexqp for min norm SVM: 1.2188

LP SVM
CVX for L1 norm SVM: 11.9319

linprog for L1 norm SVM: 19.1131
cplexlp for L1 norm SVM: 0.8705

4

